An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions
نویسندگان
چکیده
Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.
منابع مشابه
Super-oxidized solution inhibits IgE-antigen-induced degranulation and cytokine release in mast cells.
Activation of the high affinity IgE receptor (Fc epsilonRI) through IgE-antigen complexes induces mast cell degranulation, synthesis of lipid mediators and cytokine production. These effects are involved in Type I hypersensitivity reactions and controlling them has been the main objective of many anti-allergic therapies. Here we report that pretreatment of murine bone marrow derived mast cells ...
متن کاملAdvances in Therapeutic Fc Engineering – Modulation of IgG-Associated Effector Functions and Serum Half-life
Today, monoclonal immunoglobulin gamma (IgG) antibodies have become a major option in cancer therapy especially for the patients with advanced or metastatic cancers. Efficacy of monoclonal antibodies (mAbs) is achieved through both its antigen-binding fragment (Fab) and crystallizable fragment (Fc). Fab can specifically recognize tumor-associated antigen (TAA) and thus modulate TAA-linked downs...
متن کاملSingle-cell quantification of functional outcomes of CD16 ligation in NK cells by Fc-engineered antibodies
Humanized monoclonal antibodies (mAb) targeting tumor antigens have paved the way to complementary strategies in the treatment of cancer by harnessing the immune system towards a more specific response against tumors. Such mAb can mobilize natural killer (NK) cells function by mediating antibody-dependent cell cytotoxicity (ADCC). ADCC can be enhanced through Fc-region modification, but high af...
متن کاملFunctional optimization of agonistic antibodies to OX40 receptor with novel Fc mutations to promote antibody multimerization
Immunostimulatory receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily are emerging as promising targets for cancer immunotherapies. To optimize the agonism of therapeutic antibodies to these receptors, Fc engineering of antibodies was applied to facilitate the clustering of cell surface TNFRs to activate downstream signaling pathways. One engineering strategy is to iden...
متن کاملModulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.
In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2015